

Login Timing Attacks

For Mischief and Mayhem

Kiwicon 2012

Adrian Hayes

Ohh Errr Research? Ok boss.

Got to thinking about side channel attacks

BEAST

CRIME

Ohh Errr Research? Ok boss.

Can a timing attack be used

on a remote web app

to guess a hashed password

faster than a simple brute force attack?

Password Timing Attacks

Simple Login

if password == storedPassword:
loginOk()

else:
LoginFail()

PlainText Attack

A more correct password

takes longer to compare

than a less correct password

def compare(str1, str2):
if len(str1) != len(str2):

return False

for i in range(len(str1)):
if str1[i] != str2[i]:

return False

return True;

PlainText Attack

How much longer?

Bugger all

≈ 5 – 100 ns

PlainText Attack

Can we measure this over a fast network?

Not always, but sometimes yes

PlainText Attack

Can we measure this over a fast network?

Not always, but sometimes yes

PlainText Attack

The trick is taking

multiple measurements

and correctly filtering out

crap measurements

10th Percentile seem to be the best

Cheers S. A. Crosby et al.

PlainText Attack

The Process

1. Generate candidate passwords

2. Try each password, record how long it took

3. Work out if we have a slow outlier, if not GOTO step 2

4. If so, generate new passwords with known prefix, GOTO step 2

5. Stop if we have ALL THE CHARACTERS!!!!!

6. Laugh Manically (mostly optional)

aaaaaaaa
baaaaaaa
caaaaaaa
daaaaaaa
eaaaaaaa
…
0aaaaaaa

PlainText Attack

The Test Process

1. Generate candidate passwords, add a known password but
change the last character.

2. Try each password, record how long it took

3. Work out if we have a slow outlier, if not GOTO step 2

4. If we have a slow outlier and it's our password, WIN

5. Laugh Manically (mostly optional) aaaaaaaa
baaaaaaa
caaaaaaa
daaaaaaa
eaaaaaaa
passwora

PlainText Attack

Does it work though?

Lets take a look!

PlainText Attack

POC Python Socket Server

Reads password from the network

Compares it to a hard coded password

Responds with true or false

PlainText Attack

Known Password Test

Tool output over 100mb network

Hash Attack

How about hashes passwords?

Cryptographic Hash Properties:

● Easy to compute

● infeasible to create a message that has a given hash

● infeasible to modify a message without changing the hash

● infeasible to find two different messages with the same hash

sha1(qwerty) = b1b3773a05c0ed0176787a4f1574ff0075f7521e

48c16c7184a6b61a5b7d1a8bd3bd49413d6827cb = sha1(????)

Hash Attack

Simple Hash Login

if hash(password) == storedHash:
loginOk()

else:
LoginFail()

Hash Attack

Why is this “not” vulnerable

Our string comparisons no longer make sense

sha1(aaaaaa) = f7a9e24777ec23212c54d7a350bc5bea5477fdbb
sha1(baaaaa) = 259b874393d7f04c76824057912ba33b2e4cebf4
sha1(caaaaa) = 48c16c7184a6b61a5b7d1a8bd3bd49413d6827cb

Hash Attack

However!

What about hash prefix collisions?

<insert maniacal laughter here>

Hash Attacks

We generate a bunch of prefix collisions

And perform our timing attack on those

sha1(40931246) = 7dde6b3a271e5ff852c941c62ee92804e89d1da3
sha1(25751109) = 7dd61668555a3e1a9fb1a22a9e62ebabbf7eb5cc
sha1(03076342) = 7dddc57024e54636985336aee94e7c0317d8bb78
…

Hash Attacks

So perhaps we can steal the hash?

Nope.

Collisions get expensive

Number of Chars Time to Calculate

1 to 4 < 1 second

5 8 secs

6 4 mins

7 2 hrs

8 2.5 days

… ...

20 > 3,570,000,000,000,000 yrs

Hash Attacks

What about if we don't need ALL the hash?

Prefixes are enough to be useful

on large password lists

We can use the prefix to

reduce the password list size

Then fall back to brute force

Hash Attacks

List Reduction on Hash Prefix

0 1 2 3 4 5 6
0

50000000

100000000

150000000

200000000

250000000

Chars Guessed

Li
st

 S
iz

e

If hash prefix doesn't match prefix of hashed password, remove it from the list

Hash Attacks

Theoretical Attack Time

1 2 3 4 5 6
0

50

100

150

200

250

300

350

400

Total Time with Timing (hrs)
Total Time without Timing
(hrs)

Chars Guessed

T
im

e
 (

h
rs

)

Assuming 50 reqs/s, 32mil requests per character, correct password 30% in to list of 215 million words

Hash Attack

Cool eh?

But can we measure this?

Comparison Measurement

String Comparison

Ruby

const long len = RSTRING_LEN(str1);
const char *ptr1, *ptr2;

if (len != RSTRING_LEN(str2)) return Qfalse;
if (!rb_str_comparable(str1, str2)) return Qfalse;
if ((ptr1 = RSTRING_PTR(str1)) == (ptr2 = RSTRING_PTR(str2)))

return Qtrue;
if (memcmp(ptr1, ptr2, len) == 0)

return Qtrue;
return Qfalse;

Comparison Measurement

Ruby String Comparison

“Pseudo Code”

Comparison Measurement

String Comparison

Python

if (Py_SIZE(a) == Py_SIZE(b)
&& (a->ob_sval[0] == b->ob_sval[0]
&& memcmp(a->ob_sval, b->ob_sval, Py_SIZE(a)) == 0)) {
result = Py_True;

} else {
result = Py_False;

}

Comparison Measurement

Python String Comparison

“Pseudo Code”

← Extra Step

Comparison Measurement

This means first char is

easier to guess

in python

≈ 100ns first char

vs

< 20ns second char

Hash Attack

Does it work?

POC Python Socket Server

Test Mode

sha1(mcartney) = 038cba2fbdd1cdc8209136e9df8b26fd007e371c
sha1(44706014) = 038cb6cc6a5c2bfaed8ec7c3b1e2c19b2c0a9935

Generate collision for known password
so we don't follow the “correct login” code path

Hash Attack

Does it work?

POC Python Socket Server

Test Mode

 Password, Hash Prefix, Count, 10thCentile,
 46324565, 5ae, 60188, 225058,
 31078427, 895, 60187, 225238,
 32055653, 489, 60187, 225409,
 14351275, 752, 60188, 225467,
 24139348, 60b, 60187, 225712,
 31307226, 156, 60187, 225818,
 99409750, 9e9, 60188, 225852,
 44706014, 038, 60187, 226549, <--

Elapsed 00:04:26 (481501 requests).
Current Candidate: 44706014, Confidence: 103.62% (697/794)

Hash Attack

POC Python Socket Server

Attack Mode

← Correct prefix
obtained!

Hash Attack

What about a real HTTP server?

Apache, fail
(not vulnerable)

Twisted Web, win!

Hash Attack

Hash Attack

Twisted Web Server

← Correct prefix
obtained!

The Tool

Introducing...

Timing Intrusion Tool

5000

The Tool

Built to explore

network timing attacks

https://github.com/aj-code/TimingIntrusionTool5000

The Tool

Modes

● Hash and plaintext test mode
● Test timing with a known password

● Plain text length mode
● Find the length of a plaintext password

● Hash attack mode

The Tool

Solves problems for you

● Jitter filtering based on 10th percentile after multiple
measurements.

● Accurate cross-platform timing (probably).

● Socket tuning, sending, receiving.

● Hash prefix collision generation.

● Statistical calculations including automatic winner
classification.

● Multithreaded wordlist reduction and attacks.

The Tool

Limitations

● Most servers will not work, but some will

● Processing on all requests must be mostly equal

● Wont work on salted hashes

● Full plaintext attack not implemented

● Untested on slow networks (ie the internet)

The Tool

Where to from here?

● This technique could be tried all over the place

● Get the tool, try it out, extend it (opensource and all)

● Apply it to other protocols authentication

● Get creative

https://github.com/aj-code/TimingIntrusionTool5000

Conclusion

Can a timing attack be used

on a remote web app

to guess a hashed password

faster than a simple brute force attack?

Yes

But it's fucking hard.

Comparison Measurement

The End.

https://github.com/aj-code/TimingIntrusionTool5000

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

